文章摘要
Deepseek-v3.2

初探动态规划

动态规划(dynamic programming)是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。

在本节中,我们从一个经典例题入手,先给出它的暴力回溯解法,观察其中包含的重叠子问题,再逐步导出更高效的动态规划解法。

给定一个共有 n 阶的楼梯,你每步可以上 1 阶或者 2 阶,请问有多少种方案可以爬到楼顶?

如下图所示,对于一个 3 阶楼梯,共有 3 种方案可以爬到楼顶。

图片

本题的目标是求解方案数量,我们可以考虑通过回溯来穷举所有可能性。具体来说,将爬楼梯想象为一个多轮选择的过程:从地面出发,每轮选择上 1 阶或 2 阶,每当到达楼梯顶部时就将方案数量加 1 ,当越过楼梯顶部时就将其剪枝。代码如下所示:

/* 回溯 */
void backtrack(vector<int> &choices, int state, int n, vector<int> &res) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n)
res[0]++;
// 遍历所有选择
for (auto &choice : choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n)
continue;
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res);
// 回退
}
}

/* 爬楼梯:回溯 */
int climbingStairsBacktrack(int n) {
vector<int> choices = {1, 2}; // 可选择向上爬 1 阶或 2 阶
int state = 0; // 从第 0 阶开始爬
vector<int> res = {0}; // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res);
return res[0];
}

方法一:暴力搜索

回溯算法通常并不显式地对问题进行拆解,而是将求解问题看作一系列决策步骤,通过试探和剪枝,搜索所有可能的解。

我们可以尝试从问题分解的角度分析这道题。设爬到第 i 阶共有 dp[i] 种方案,那么 dp[i] 就是原问题,其子问题包括:

dp[i − 1], dp[i − 2], …, dp[2], dp[1]

由于每轮只能上 1 阶或 2 阶,因此当我们站在第 i 阶楼梯上时,上一轮只可能站在第 i − 1 阶或第 i − 2 阶上。换句话说,我们只能从第 i − 1 阶或第 i − 2 阶迈向第 i 阶。

由此便可得出一个重要推论:爬到第 i − 1 阶的方案数加上爬到第 i − 2 阶的方案数就等于爬到第 i 阶的方案数。公式如下:

dp[i] = dp[i − 1] + dp[i − 2]

这意味着在爬楼梯问题中,各个子问题之间存在递推关系,原问题的解可以由子问题的解构建得来。下图展示了该递推关系。

我们可以根据递推公式得到暴力搜索解法。以 dp[n] 为起始点,递归地将一个较大问题拆解为两个较小问题的和,直至到达最小子问题 dp[1]dp[2] 时返回。其中,最小子问题的解是已知的,即 dp[1] = 1dp[2] = 2 ,表示爬到第 12 阶分别有 12 种方案。

观察以下代码,它和标准回溯代码都属于深度优先搜索,但更加简洁:

/* 搜索 */
int dfs(int i) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1) + dfs(i - 2);
return count;
}

/* 爬楼梯:搜索 */
int climbingStairsDFS(int n) {
return dfs(n);
}

下图展示了暴力搜索形成的递归树。对于问题 dp[n] ,其递归树的深度为 n ,时间复杂度为 O(2n) 。指数阶属于爆炸式增长,如果我们输入一个比较大的 n ,则会陷入漫长的等待之中。

观察上图,指数阶的时间复杂度是“重叠子问题”导致的。例如 dp[9] 被分解为 dp[8]dp[7]dp[8] 被分解为 dp[7]dp[6] ,两者都包含子问题 dp[7]

以此类推,子问题中包含更小的重叠子问题,子子孙孙无穷尽也。绝大部分计算资源都浪费在这些重叠的子问题上。

方法二:记忆化搜索

为了提升算法效率,我们希望所有的重叠子问题都只被计算一次。为此,我们声明一个数组 mem 来记录每个子问题的解,并在搜索过程中将重叠子问题剪枝。

  1. 当首次计算 dp[i] 时,我们将其记录至 mem[i] ,以便之后使用。
  2. 当再次需要计算 dp[i] 时,我们便可直接从 mem[i] 中获取结果,从而避免重复计算该子问题。

代码如下所示:

/* 记忆化搜索 */
int dfs(int i, vector<int> &mem) {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2)
return i;
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1)
return mem[i];
// dp[i] = dp[i-1] + dp[i-2]
int count = dfs(i - 1, mem) + dfs(i - 2, mem);
// 记录 dp[i]
mem[i] = count;
return count;
}

/* 爬楼梯:记忆化搜索 */
int climbingStairsDFSMem(int n) {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
vector<int> mem(n + 1, -1);
return dfs(n, mem);
}

观察下图,经过记忆化处理后,所有重叠子问题都只需计算一次,时间复杂度优化至 O(n) ,这是一个巨大的飞跃。

方法三:动态规划

记忆化搜索是一种“从顶至底”的方法:我们从原问题(根节点)开始,递归地将较大子问题分解为较小子问题,直至解已知的最小子问题(叶节点)。之后,通过回溯逐层收集子问题的解,构建出原问题的解。

与之相反,动态规划是一种“从底至顶”的方法:从最小子问题的解开始,迭代地构建更大子问题的解,直至得到原问题的解。

由于动态规划不包含回溯过程,因此只需使用循环迭代实现,无须使用递归。在以下代码中,我们初始化一个数组 dp 来存储子问题的解,它起到了与记忆化搜索中数组 mem 相同的记录作用:

/* 爬楼梯:动态规划 */
int climbingStairsDP(int n) {
if (n == 1 || n == 2)
return n;
// 初始化 dp 表,用于存储子问题的解
vector<int> dp(n + 1);
// 初始状态:预设最小子问题的解
dp[1] = 1;
dp[2] = 2;
// 状态转移:从较小子问题逐步求解较大子问题
for (int i = 3; i <= n; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n];
}

下图模拟了以上代码的执行过程。

与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 i

根据以上内容,我们可以总结出动态规划的常用术语。

  • 将数组 dp 称为 dp 表dp[i] 表示状态 i 对应子问题的解。
  • 将最小子问题对应的状态(第 1 阶和第 2 阶楼梯)称为初始状态
  • 将递推公式 dp[i] = dp[i − 1] + dp[i − 2] 称为状态转移方程

空间优化

细心的读者可能发现了,由于 dp[i] 只与 dp[i − 1]dp[i − 2] 有关,因此我们无须使用一个数组 dp 来存储所有子问题的解,而只需两个变量滚动前进即可。代码如下所示:

/* 爬楼梯:空间优化后的动态规划 */
int climbingStairsDPComp(int n) {
if (n == 1 || n == 2)
return n;
int a = 1, b = 2;
for (int i = 3; i <= n; i++) {
int tmp = b;
b = a + b;
a = tmp;
}
return b;
}

观察以上代码,由于省去了数组 dp 占用的空间,因此空间复杂度从 O(n) 降至 O(1)

在动态规划问题中,当前状态往往仅与前面有限个状态有关,这时我们可以只保留必要的状态,通过“降维”来节省内存空间。这种空间优化技巧被称为“滚动变量”或“滚动数组”